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LETTER TO THE EDITOR 

Scaling behaviour in discrete traffic models 

Gibor Cshyi t  and Jhos  Kert€szt 
Institote of Physics, Technical University of Budapest Budafoki lit 8.. Budapest. Hungary, 
H-I l l1  

Received 14 June 1995 

Abstract We investigate the noisy, discrete, single lane highway traffic mode1 pmposed by 
Nagel and Schreckenkrg and demonstrate by computer simulations that, as a function of the car 
density, then is a dynomicd transition f” laminar Eow to jammed traffic in the system related 
to the divergence of the relaxation time of average car velocity. The critical density is close 
to the position of the &mum in the fundamental diagram. We give e s t i w s  of the critical 
exponenu; related to this jamr@g transition. The critical density of the geometrical ((I C 1)- 
dimensional percalalion) transition of jammed reaons can be rather far Itom the jamming point 
depending on the strength of the noise which indicates that cwperativity leading to the jamming 
transition can be long range in character. 

’ 

,Numerous articles have been published in the last couple of years investigating discrete 
models of highway traftic flow 11-41. It has been suggested that very simple probabilistic 
models based on cellular automata can reproduce features of real traffic, including a supposed 
transition from low-density laminar flow to a high-density phase, where star-stop waves 
are dominant. The behaviour of these simple models is very complex near this transition 
and, up to now, is still not well understood. In this letter, we would like to shed some 
light on what we believe to be the dynamical jamming trdnsition with a well-defined critical 
point, as distinguished from the percolation-type transition of jammed regions in the same 
model: 

We consider the model proposed in [ l ] ,  a cellular automaton consisting of a o n e  
dimensional array of cells with periodic boundaj conditions. Every cell has (U,, + 2) 
states: it can be empty or it can contain a car with velocity U = 0.1, . . . , U-.. We perform 
the following steps in parallel for all cais: 

Acceleration: increase U by 1 if possible. ( 1 4  
Deceleration: decrease U to avoid crash with the car in front. (W 
Randomization: decrease U by 1 with probability p if possible. (IC) 
Movement: move forward U sites. ( 1 4  
The choice of U,, = 5 is tradiiional in the literature of this model, and it can be 

considered as a limit speed. We would like to stress the importance of the third step. The 
fact that the model uses breuking noise is crucial. One could equally introduce random 
accelerations, but it can be shown that this type of perturbation dies out very quickly, see 
[5]. Throughout this letter we use p = 0.25 unless stated otherwise. 

A convenient way to investigate the model is to draw a diagram of flow against density, 
the so-calledfundamental diagram. It is a curve with a well-defined maximum near a density 
of 0.11. The occurrence of density waves is related to the nonlinearity of the fundamental 
diagram and it is expected that the jamming transition will occur somewhere near the 

1 E-mail: kertesz@phy.bme.hu 
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maximum. At low densities the flow is ‘free’ with very few waves due to fluctuations (IC), 
which die out quickly, at high densities above the m&imum start-stop waves dominate the 
system; it is in the ‘jammed’ state. 

what is the nature of this transition? It has been suggested [6] that, approaching from 
the low-density region, the jammed regions grow in space and time and at the jamming 
point they form a (1 + 1)-dimensional interconnected infinite network. This would point to 
a percolation-type picture for the process. 

We would like to investigate the dynamics without explicitly referring to the density 
waves by searching for critical slowing down. In order to do so we measure the average 
velocity ii of all cars as a function of time I starting from randomly positioned cars with 
zero initial velocity (a( t  = 0) = 0). The function iict) is expected to be monotonically 
increasing and asymptotically approaches the steady-state value U,. The small deviations 
in the measured curves from this expectation are due to fluctuations in finite-size samples 
which can be suppressed by averaging over an ensemble. 

At early times and low densities the function Z(t)  is independent of the interaction 
between the cars and it follows the curve u*(i) for the zero-density, non-interacting limit 
( ( lb)  is disregarded): lim,,oii(t) = (1 - p ) t  = u*(t < 4). Gradually the dynamics are 
influenced by the car-car interaction E d  this is manifested in the slower convergence and 
in the lower asymptotic steady-state value um. 

In order to characterize the dynamics we define the reluxation time 
m 

s(p)  = (min(v*(O, (am)) - ( W N d t  (2) 

where the (. . .) denotes ensemble average. Due to the dimensionless units no normalization 
was introduced. We use definition (2) because it expresses the two mechanisms of relaxation: 
the fast, essentially non-interacting part and the much slower part where interaction and 
jamming becomes important. The timescale of the second process can be magnitudes 
larger than the fust one because the emerging jams have to disperse. 

We expect that at the jamming transition the global character of the,flow should change 
and the approach of the steady state takes an extremely long time. Much below the transition 
emerging jams are independent: they disappear rather quickly. As the density is increased 
the cars escaping from one jam are getting collected by another (not necessarily nearly 
positioned) wave thus the jams interact and a complicated web of waves characterizes the 
steady state. This picture suggests that, in the thermodynamic limit, the relaxation time 
should diverge at the transition. 

For finite sizes the divergence of the relaxation time at the critical density pc is reflected 
in a peak of the s ( p )  curve. In figure 1 we show data for system sizes L = 1024, 2048, 
4096, 5824 and 8192. We used a site-oriented multispin coding technique [4]. A  relaxation^ 
data point in figure 1 for system size *number of runs = 8000 took 20 minutes CPU time 
on the CM-5 with 64 nodes, and approximately 1 day on an HP workstation. 

The results can be interpreted in terms of critical slowing down and a finite-size scaling 
assumption is compatible with our data. Denoting the maximal value of z for a given size 
L by s,,,(L) and the width of the peak at z&)/2 by o(L): 

s,(L) M LZ ( 3 4  
u(L)  a L+V (3b) 

is expected. Figure 2 shows the evaluations of our data using (3) and suggesting 
U = 0.32 f 0.03 and z = 1.34 f 0.04. The accuracy of our data does not allow us to 
make a scaling plot for the finite-size shift in the position of the transition. In fact, it 
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Figure 1. The relaxation time T as a function of the density and for different system sizes: 
L =IO24 (U), 2048 (0). 4096 (0). 5824 (0) and 8192 (A). 

seems that this shift is rather small and we can conclude that the jamming point is at 
o = 0.1028 f 0.0002.' Our results should be ComDared to the relaxation time analysis of a 
similar but deterministic mcdel~where an exponent z = 1 was obtained [7]. 
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F i p e  2. Finite size scaling of (a)  the maximum of the relaxation time r, according to ( 3 4  
and (b)  of the width a of the curves in figure I at half heights evaluated using (3b). 

We have localized the dynamical critical point by the divergence of the relaxation time 
and the obtained critical density is indeed near (though somewhat below) the position of 
the maximum in the fundamental diagram i&- 0.11). If we want to~compare this result 
with the percolation picture, which is a geometrical concept, we need to define the jammed 
regions. We chose a site-.oriented definition: a .site. is considered to  be^ in a jam, if two 
or more cars are within a window of five centred on the site. Other definitions can and 
have been used elsewhere [6,8]. In particular, [6] defines a car to be jammed if it does 
not go with maximuyspeed. Going along with this definition, one might consider the 
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percolation of ‘sites’ in the jammed state in ‘car-space’ rather than real space. However, 
such an approach does not alter our arguments qualitatively. 

Space 
P 

Figure 3. Snapshots of the jammed regions at three different densities: (a) p = 0.1, (b) 
p = 0.15 and (e) p = 0.42. Clearly, there is no percolation of waves in (b) although the density 
is already above the jamming transition. 

Figure 3 shows the plots of jammed regions at three different densities: below the 
jamming transition (figure 3(a)), slightly above the transition (figure 3(b)) and at much 
higher density (figure 3(c)). We observe that he waves do not percolate immediately above 
the jamming transition but only at a second critical density which we denote by p,. 

In this way, we can speak about a geometrical transition in the system, when the waves 
become connected in spacetime, and an infinite wave appears. For this, we consider a 
(1 + 1)-dimensional (one space and one time dimension) directed percolation problem of 
waves starting at t = 0. By monitoring the number of samples n of size L = 1000 and 
L = .lOOOO where the waves survive until f = 100000 we estimate a percolation transition 
point pp % 0.36 where n increases sharply. However, simple scaling assumptions do not 
seem to work for this correlated percolation problem. We have studied the average density 
of cars belonging to the considered waves as a function of time and no simple critical 
behaviour was observed. We also tried to locate pp by calculating the average number N ( t )  
of waves starting at f = 0 and surviving at least until i .  We averaged over at least 30 
samples and used L = 10000 for every specified densities. At the percolation threshold 
N ( t )  is expected to decay algebraically N ( f )  cx P. Based on figure 4 one would obtain 
p p  % 0.41 with x sz 0.3, a value different from that obtained for a deterministic version 
of the model [6] (x  % 0.5). Figure 4 does not look like a usual density plot for directed 
percolation where the critical curve separates lines bending downwards ( p  c pc)  from the 
lines saturating above the critical curve ( p  > pc). The fact that the occurrence of the infinite 
waves does not coincide with the point where at least approximate scaling can be observed 
also shows that the percolation process has a complicated mechanism in this model. In any 
case, the percolation threshold is much above the dynamical jamming point. 

The position of the percolation transition depends somewhat on the particular definition 
of the waves. The dynamic jamming point where t diverges was defined without reference to 
the jams, but with any particular definition of waves, the actual ppalue,  where connectivity 
appears, depends strongly on p. If p ’ i s  low, l i e  in our case (p = 0.25), connectivity of 
jammed regions occurs only at much higher densities. Above this percolation critical point 
pp, a wave of infinite size exists in the thermodynamical limit, i.e. a jam which is always 
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Figure 4. The average number N ( t )  of waves surviving at least until t in a log-log plot for 
different densities p = 0.25,0.30.0.35.0.37.0.41 (full c w e s  mm~bottom to top) and 0.43 
(broken). The curyes a E  normalized, so that at t = 1. N ( t )  = 1000. At p = 0.41 a scaling 
assumption is tolerable and a power law decay is obtained with an approximate exponent x = 0.3. 
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present. If p is large, connectivity occurs very close to the dynamical transition point. For 
p = 0.5 the percolation threshold pp is barely distinguishable from pc and this has lead to 
the assumption that the jamming transition can be considered as a short-range percolation 
problem [6]. Our result demonstrates that this is not necessarily so: for p = 0.25 the two 
transitions are clearly different. 

The choice of p = 0.25 in our calculations was deliberate. The crucial point is that a 
much smaller value of p had to be chosen than 1/2 where the dynamical jamming point 
and the percolation threshold become numerically very close. Thus we demonstrated that 
for small values of p the dynamical transition is not related to the short-range percolation 
properties. What is then the mechanism of cooperativity? Much below the threshold 
isolated jams occur and disappear,and the cars leaving them move again in free flow until a 
Euctuation creates a new jam where they take a while. Above the jamming point (but below 
the percolation threshold) the density of jams is so high that the cars leaving one jam already 
face another one-possibly far away-which is fed by them. There is a considerable flux of 
cars from one jam to another, without the jams touching. This long-range transport between 
jams results in a non-local network for p > pc and just at pc it takes a very (infinitely) long 
time to build it up. The flux of cars from one jam to the other one is also present above 
the percolation point. This results in a coarsening of waves and we think that this is the 
mechanism leading to the complicated percolation mechanism. 

We are indebted to Dietrich Wolf (HLRZ Jiilich) who made the CM-5 available for us so that 
these calculations became possible. We would like to express OUT gratitude to Peter Ossadnik 
for his substantial help with the CM-5. Thanks are also due to Michael Schreckenberg for 
useful discussions and preprints. This research was supported by OTKA TO16568. 
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